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Abstract

Unmanned Aerial Vehicles (UAVs) rely on the Global Navigation Satellite System (GNSS)
for precise navigation, but vulnerabilities such as jamming and spoofing can jeopardize
mission success. This project developed an image-based redundancy navigation system
to ensure reliable UAV navigation following GNSS signal loss. The system optimizes the
positional inference pipeline by integrating advanced feature extraction, matching, and
planar transformation techniques, achieving radial localization errors below 2% of the
UAV’s displacement from a reference image. Designed for real-time operation, the system
provides estimated position and heading within two seconds, enabling pilots to maintain
effective control. Comprehensive testing across diverse environments demonstrated the
system’s high accuracy, robustness, and generalizability without the need for environment-
specific tuning. It remained effective in challenging operational conditions including
variations in lighting, image information overlap, camera tilt, and resolution. This image-
based redundancy navigation system offers a practical and dependable redundancy solution
for enhancing UAV operational safety and supporting national security.
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Nomenclature

Variables and Functions

RMSE Root Mean Square Error, representing the average magnitude of errors.
In this study, the usage of this metric mainly refers to the radial error in
Latitude, Longitude estimate, in metres, averaged across the dataset.

dradial Radial error distance, measuring the distance between estimated and
true positions in meters.

x, y Coordinates of a point in an image or on the ground plane.

θ Rotation angle between consecutive images in degrees or radians, used
for orientation alignment.

T Transformation matrix representing the planar transformation between
images.

H Homography matrix, specifically mapping points from one image plane
to another.

GPS Global Positioning System, providing geolocation and time information
for navigation.

GNSS Global Navigation Satellite System, a generic term for satellite-based
navigation systems.

MAE Mean Absolute Error, measuring the average localization error without
directionality.

MI Mutual Information, measuring the similarity or overlap between
images, often used in image matching.

Lat-Lon Esti-
mation

Estimation of Latitude and Longitude; If Referencing an error, it is the
radial one.
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Nomenclature ix

Key Terms and Concepts

Features
Unique keypoints in an image along with their descriptors, used for
identifying and uniquely matching points across different images for
localization.

Affine
Transfor-
mation

A planar transformation that preserves points, straight lines, and planes,
including translation, scaling, rotation, and shearing.

Descriptors
Numerical values describing the characteristics of keypoints in an image,
allowing for effective matching between different images.

Feature De-
tectors (or
Extractors)

Processes for identifying distinct features in an image, which are
invariant to changes in scale, rotation, and illumination.

Global
Matching

Process of finding similarities and determining pose between entire
images, considering full-image context rather than isolated keypoints.

GPS
(Global
Positioning
System)

A satellite navigation system providing geolocation and time
information. Vulnerable to jamming and spoofing, posing reliability
issues for UAV navigation.

Homography
A planar transformation mapping points from one image plane to
another in 2D space. Used in image processing to describe
transformations like rotation, translation, scaling, and shearing.

Homography
Estimation

The process of calculating the homography matrix that defines the
transformation between two images for alignment and reliable
localization.

Keypoints
Specific points in an image used to identify features. Typically areas of
strong contrast or distinct patterns, enabling reliable matching across
different images.

Local
Matching

Matching keypoints between images by comparing descriptors, focusing
on individual feature descriptors to establish precise localization.

Mutual In-
formation

A metric quantifying the information shared between two images, aiding
in assessing the quality of feature matching and overlap similarity.

Planar
Transforms

General transformations applied to a plane in 2D space, such as affine
transformations, homography, scaling, and shearing, which are crucial
for image alignment.



Nomenclature x

Scaling
A transformation that changes the size of an image or its features
without altering its shape, normalizing feature sizes across different
images.

Shearing
A type of affine transformation that slants the shape of an object in an
image. Shearing changes angles between lines while keeping parallel
lines intact.

Localization
The process of determining the position of an object or feature within a
given space, used in the context of GNSS and image-based navigation.
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Acronyms and Abbreviations

GPS Global Positioning System

RMSE Root Mean Square Error

MAE Mean Absolute Error

MI Mutual Information

UAV Unmanned Aerial Vehicle

GNSS Global Navigation Satellite System

DOF Degrees of Freedom



Chapter 1

Introduction
1.1. Background
Unmanned Aerial Vehicles (UAVs) have become indispensable tools in various sectors,
including military operations, surveillance, reconnaissance, and intelligence gathering. In
South Africa, UAVs play a crucial role in border monitoring and supporting military
missions by providing persistent aerial observation [1]. Their capability to operate in
hazardous or inaccessible areas enhances operational effectiveness and safety.

Despite their widespread use, UAVs predominantly rely on Global Navigation Satel-
lite Systems (GNSS) such as the Global Positioning System (GPS) for navigation and
positioning. GNSS operates by utilizing a constellation of satellites that transmit precise
time-stamped signals to Earth-based receivers. Each receiver calculates its position by
measuring the time delay of signals from multiple satellites, requiring data from at least
four satellites to determine its three-dimensional location. While GNSS provides essential
Positioning, Navigation, and Timing (PNT) information globally, its reliance on weak,
line-of-sight satellite signals introduces significant vulnerabilities [2].

In recent years, the vulnerabilities of GNSS to jamming and spoofing have become
increasingly pronounced. With the advent of more accessible jamming and spoofing tech-
nology, intentional GNSS interference is no longer a complex undertaking [3]. Instances of
GNSS jamming and spoofing are particularly prevalent in conflict zones, where adversaries
exploit GNSS weaknesses to disrupt or mislead UAV operations. The issue is far from
hypothetical; over 1100 daily incidents of aircraft GNSS spoofing alone have been reported
worldwide, underscoring the urgency of addressing these vulnerabilities [3].

The increasing prevalence of GNSS disruptions has direct implications for national
security. Loss of GNSS signals can lead to an inability to locate the UAV, compromising
control and potentially resulting in the UAV crashing or being captured. This situation
emphasizes the critical need for a safety measure that can ensure the safe return of the
UAV following GNSS signal loss [2].

Various alternative navigation methods have been explored to mitigate complete reliance
on Global Navigation Satellite Systems (GNSS). Odometry-based solutions, or inertial
measurement units (IMUs) estimate UAV displacement through inertial measurements from
accelerometers and gyroscopes; however, they suffer from significant drift over relatively
short distances, rendering the location estimates of even high-end IMUs unusable for
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typical missions [4]. Quantum sensing navigation employs cold atom inertial sensors to
achieve superior precision compared to traditional IMUs, but it is often prohibitively
expensive and bulky [5]. Radio Frequency (RF) communication systems can triangulate
UAV positions using ground beacons or cellular towers, yet their effectiveness is limited in
remote areas and by the Earth’s curvature, restricting their operational range [6]. Light
Detection and Ranging (LIDAR) systems map the ground by emitting laser pulses and
measuring their return times to create detailed 3D environmental maps, but they are
power-intensive and emit detectable signals, which are undesirable for stealth operations
prevalent in military contexts [7].

Image-based navigation presents a viable solution that addresses the limitations of the
aforementioned methods. This technique involves capturing images of the landscape and
comparing them to previously captured reference images using planar transformations.
These transformations align two images of the same planar surface based on their features,
enabling the estimation of the UAV’s orientation and position relative to the reference
image. The coordinates and heading of the reference image can then be used to determine
the UAV’s absolute location and heading. Reference images can be captured during the
UAV’s outbound path, allowing it to navigate back to base after GNSS denial by retracing
its steps. Alternatively, these images can be pre-acquired and stored in a database for
real-time navigation [8].

However, it remains unclear whether image-based systems can effectively operate in
the context of UAV navigation. Specifically, it is uncertain whether they can generalize to
various terrains and operational conditions, such as varying light levels, while maintaining
their accuracy. This study aims to develop a working pipeline for this context and test it
on real-world data, thereby addressing these uncertainties and evaluating the viability of
image-based navigation as a redundancy measure to GNSS.

1.2. Problem Statement
The increasing frequency of GNSS disruptions due to jamming and spoofing poses a
significant threat to UAV operations [2]. Current alternatives to GNSS navigation, such as
quantum sensing, odometry, RF communication, and LIDAR, have significant drawbacks:
they are either too expensive and bulky, reduce stealth capabilities, or suffer from drift
over time [4–7]. To address these drawbacks and enhance the safety and effectiveness of
national military missions, a comprehensive synthesis and evaluation of an image-based
redundancy navigation system is required. Existing studies on image-based UAV navigation
lack detailed system setups and fail to evaluate the system practicality across diverse
environments and challenging conditions [9, 10].
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1.3. Aim
The primary aim of this project is to synthesize and evaluate an image-based navigation
system for UAVs that estimates their global position in GNSS-denied environments. The
approach will leverage images and telemetry data captured prior to GNSS denial, enabling
the UAV to navigate back to base by following its outbound path.

1.4. Objectives
1. Develop a Localization Pipeline: Create a pipeline that achieves the highest possible
position estimation accuracy while maintaining real-time performance and generalizability.

2. Identify the Best Techniques: Select, integrate, and optimize feature extraction,
matching, and planar transformation estimation techniques.

3. Evaluate the Method Across Environments: Assess the system’s performance
in various terrains and operational conditions to ensure robustness and adaptability.

4. Evaluate the Method Under Stressful Conditions: Test the system’s reliability
and accuracy under challenging conditions such as low light levels, high-speed movement,
and partial occlusions.

1.5. Requirements
Accuracy: Achieve a maximum single-image radial location estimation error of less than
10% of the UAV’s displacement between the current and reference image across all datasets.

Real-Time Performance: Ensure a maximum processing time of less than 2 seconds
for position and heading estimation following GNSS signal loss across all datasets.

Processing of reference images during the outbound journey, while GNSS signal is
available, will have a maximum allowed processing time of 5 seconds. Since the navigator
does not need to respond at this point, and the landscape changes relatively slowly, a
higher capture rate would only result in excessive, nearly identical reference images.

Adaptability: Maintain the accuracy and time constraints across diverse environments
without requiring manual parameter adjustments for each environment.

1.6. Scope
This project is scoped to ensure feasibility within the given timeframe and resources by
making several assumptions and acknowledging limitations. It assumes that the UAV’s
downward-facing camera remains perfectly aligned and that the UAV’s altitude is constant,
minimizing perspective distortion and scale changes, respectively. Images are expected to
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be free from occlusions and significant dynamic movement. The system relies on onboard
sensors like IMUs, coupled with acceptable turning rates, to turn around and recapture
its path after GNSS signal loss, ensuring over 60% image overlap between current and
reference images. The study focuses on assessing the system’s viability using established
methods and parameter sets, excluding exhaustive optimization and untrained machine
learning methods. The system outputs the estimated position and heading information
for navigation assistance based on simulated video footage; it does not integrate with
real-world systems.

1.7. Data Provisioning
An agreement was established with an external party to provide real-world flight data
from their UAV operations for use prior to the start of this study. However, the data was
not provided within the project’s timeframe. To proceed, Google Earth data [11] was
utilized. It offers free access to high-resolution aerial imagery with 3D terrain features and
therefore real-world perspective changes. It also provides latitude and longitude (Lat-Lon)
coordinates and heading, closely approximating real-world data.

1.8. Structure of the Report
This report is structured to provide a comprehensive overview of the research undertaken to
develop the image-based GNSS redundancy navigation system for UAVs. Chapter 2 reviews
the studies related to vision-based navigation solutions and discusses their contextual
limitations. Chapter 3 details the methodology, including feature extraction, matching,
similarity computation, and planar transformations. Chapter 4 provides a comparative
analysis of different methods applicable to each stage of the pipeline. Chapter 5 presents
the evaluation of the developed pipeline against the objectives and various operational
challenges. Chapter 6 summarizes the project’s outcomes and outlines recommendations
for future work.



Chapter 2

Literature Review
2.1. Related Work
Autonomous navigation for Unmanned Aerial Vehicles (UAVs) has been extensively studied,
with prominent methods like Simultaneous Localization and Mapping (SLAM) providing
comprehensive mapping and localization capabilities. SLAM enables UAVs to construct
detailed maps of their environment while simultaneously tracking their position within
these maps [8]. Typically, SLAM systems integrate data from multiple sensors—such as
cameras, LiDAR, and Inertial Measurement Units (IMUs)—to achieve accurate localization,
making them particularly effective in structured, indoor environments like warehouses.
However, building and maintaining high-resolution maps in SLAM is computationally
intensive, requiring significant processing power and memory [8]. This computational
burden poses challenges for real-time applications in resource-limited UAVs. Additionally,
SLAM systems are sensitive to map distortions and inaccuracies, which can degrade
localization reliability [8]. Moreover, in the context of UAV navigation for return flights,
constructing an entire map of the outbound path may be unnecessary, making SLAM an
excessive solution in terms of memory consumption and computational resources for such
applications.

Optical flow is another technique for motion estimation, which calculates the apparent
motion of brightness patterns in the image plane between consecutive frames [9]. Optical
flow relies on the brightness constancy assumption and small, smooth movements, which
can be violated in cases of abrupt UAV movements, rotations, or scale changes, leading
to unreliable motion estimates. Consequently, optical flow is generally more suitable
for short-term odometry rather than long-distance reverse path tracking. Additionally,
computing dense optical flow across entire frames is computationally intensive, rendering
it less practical for real-time applications on resource-constrained UAVs [12].

Several studies have explored image-based solutions for UAV navigation, utilizing
feature matching techniques to estimate the UAV’s location.

For instance, Zhang et al. [10] introduced LoFTRS, a deep learning-based image
matching method with semantic constraints to improve matching accuracy. LoFTRS
provides refined feature correspondences that strengthen subsequent UAV localization
tasks. While this study offers valuable insights into potential pipelines and highlights the
benefits of efficient feature extractors, it lacks a detailed implementation, comparative

5
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analysis of methods, and practical testing across diverse environments.
Another study by Sim et al. [9] proposed an image-based location estimation approach

that combines relative positioning techniques through aerial image sequences to improve
short-term odometry, enhancing UAV navigation reliability over short distances. Their
method emphasizes the importance of constant global correction by normalizing to a global
reference frame. However, their approach does not consider the use of fixed reference
images for navigation, which limits its applicability for reference-image-based navigation
in GNSS-denied environments.

However, these existing methods do not provide detailed descriptions of the complete
navigation pipeline, including the selection of specific methods and parameter choices.
Moreover, they do not assess the system’s ability to generalize across diverse environments
or test its robustness under typical operational challenges faced during UAV missions.

To address these gaps, this study presents a comprehensive image-based navigation
pipeline for UAVs. It includes in-depth comparisons of different methods, emphasizes
environmental adaptability, and undergoes rigorous testing under adverse conditions. This
approach aims to provide a reliable and scalable framework for addressing real-world UAV
navigation challenges in GNSS-denied environments.

2.2. Fundamental Concepts and Techniques
This section provides a comprehensive overview of the fundamental concepts and techniques
that underpin the proposed image-based UAV navigation system. By delving into feature
extraction, matching, and planar transformations, it establishes the theoretical foundation
essential for the subsequent system design and implementation. The discussion emphasizes
the critical role of feature-based methods over direct approaches, setting the stage for
understanding the chosen methodologies.

2.2.1. Feature Detectors

Feature extraction is a cornerstone of image-based UAV navigation, enabling the estimation
of transformations such as rotation and translation between consecutive images. Feature
detectors identify keypoints—distinct, repeatable points within an image—and generate
descriptors that encapsulate information about the local image region surrounding each
keypoint. These keypoints and descriptors, or simply features, are essential for accurate
matching across multiple frames, allowing the system to track movement while maintaining
invariance to changes in scale, rotation, and illumination. An example of feature detection
and matching, the latter explained in the subsequent section, is illustrated in Figure 5.6.
This image shows the top 50 matches between two images after rotational alignment.
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ORB (Oriented FAST and Rotated BRIEF)

ORB combines the FAST [13] keypoint detector with the BRIEF [14] descriptor,
enhanced for rotation invariance. FAST rapidly identifies keypoints by analyzing pixel
intensity differences in a circular region around each candidate point. Once detected,
BRIEF encodes the local image patch into a binary string through intensity comparisons.
ORB introduces rotational invariance by aligning keypoints based on their dominant
orientation before descriptor computation. This enhancement makes ORB both extremely
fast and robust to scale and in-plane rotation, although it may struggle with repetitive
textures or complex lighting variations [15].

AKAZE (Accelerated-KAZE)

AKAZE constructs a nonlinear scale space using diffusion-based filtering, capturing finer
image details more effectively than linear methods. It detects keypoints by assessing local
contrast with a specialized adaptive filter, enabling the identification of subtle features that
simpler detectors might miss. The Modified Local Difference Binary (MLDB) [16]
descriptor encodes the neighborhood of each keypoint into a binary vector based on pixel
intensity differences. While AKAZE is both fast and compact, its performance can be
sensitive to detection thresholds across different environments, potentially affecting its
robustness in varied operational contexts [17]. However, a notable strength of AKAZE is
its rotational invariance [15].

SuperPoint with LightGlue

SuperPoint is a deep learning-based keypoint detector and descriptor that leverages
convolutional neural networks (CNNs) to identify and describe keypoints in a single forward
pass. Pre-trained on extensive image datasets, SuperPoint excels at recognizing stable and
distinctive keypoints under varied conditions [18]. However, its performance may degrade on
datasets significantly different from its training data. Pairing SuperPoint with LightGlue,
a machine-learning-based matcher, enhances matching accuracy through advanced graph-
based techniques that were recognized at the 2023 International Conference on Computer
Vision [19]. Despite their high accuracy, SuperPoint and LightGlue are computationally
intensive and require GPU acceleration for real-time applications. However, their improved
performance justifies their inclusion in this study, even though they may not achieve
real-time performance when tested on a CPU alone [18].

2.2.2. Feature Matching

Feature matching establishes correspondences between keypoints in different images based
on descriptor similarity. After identifying these correspondences, ambiguities and low-
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quality matches are removed, as detailed in Section 2.2.5.
Each matcher generates a list of potential matches along with their similarity scores,

quantified using a descriptor-space distance metric. These scores are instrumental in
subsequent filtering processes.

Feature matching involves two primary components: the choice of matching technique
to acquire potential matches and the search technique that determines which of these
matches to retain.

Types of Feature Matching Techniques

The following match acquisition techniques are commonly employed in feature-based
navigation systems:

Brute-Force Matcher (BFMatcher): The Brute-Force Matcher is a simple, exhaus-
tive matcher that matches each feature in one image with every feature in the second image,
ensuring the best possible match based on descriptor similarity. While this guarantees
high accuracy, it is computationally expensive, especially with large numbers of keypoints,
making it less suitable for real-time applications without optimization [20].

Fast Library for Approximate Nearest Neighbours (FLANN): FLANN accel-
erates the nearest neighbour search in high-dimensional descriptor spaces using algorithms
such as KD-trees or hierarchical clustering, adapting dynamically to the dataset. This
approximate matching approach offers significant speed improvements with minimal loss
in accuracy, making it ideal for real-time applications with extensive datasets [21].

LightGlue: Explained in Section 2.2.1.
The following search techniques are commonly used to filter matches and retain only

the most reliable correspondences:
Radius Search: This method retains matches within a specified distance in descriptor

space, effectively filtering out weaker matches. However, it does not guarantee a fixed
number of matches per keypoint, leading to inconsistent results [22].

K-Nearest Neighbours (KNN) Matching: KNN matching retains the top K
matches for each keypoint, allowing the application of post-filtering techniques such as
Lowe’s ratio test to eliminate ambiguous matches [22].

Vanilla Matching: Vanilla matching returns the single best match for each keypoint
based on the closest descriptor distance. It is a subset of KNN matching with K=1, offering
simplicity and ease of implementation [22].

2.2.3. Image Similarity Computation

Image similarity computation is a pivotal component of UAV navigation systems that
rely on reference images for accurate localization and pose estimation. Effective similarity
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measures ensure efficient processing of extensive image datasets and facilitate precise
transformation estimations, which are essential for reliable navigation.

2.2.3.1 Proximity-Based Techniques

To achieve efficient, real-time performance, the search space is reduced to images within the
proximity of UAV’s last known location, filtering images within a static or dynamic radius.
While this method is highly efficient, it does not account for potential deviations from
the expected flight path or the presence of poor-quality reference images. This limitation
implies that this measure cannot be used as the sole basis for image similarity computation,
necessitating the integration of additional techniques for comprehensive assessment.

2.2.3.2 Global Matching Techniques

To ensure images are evaluated for similarity and ensure they are free from significant
distortion, global matching, or direct methods are employed. Direct methods estimate
planar transformations by comparing entire image pixel intensities and minimizing differ-
ences through optimization techniques like gradient descent. Because they consider the
entire image context, these methods are well-suited for similarity comparisons; however,
they are not ideal for precise transformation estimation due to their sensitivity to noise
and illumination changes [23]. The following methods are global matching techniques
commonly used in image similarity computation:

Cross-Correlation
Cross-correlation measures similarity by sliding one image over another and computing

the sum of pixel-wise multiplications at each position. The peak value signifies the best
alignment, and its magnitude indicates the confidence level of the similarity. Higher
confidence values reflect greater similarity between the images. While straightforward
to implement, cross-correlation is sensitive to noise and illumination changes, which can
compromise the reliability of the similarity measure [24].

Histograms
Histogram comparison assesses similarity by analyzing the distribution of pixel intensi-

ties within each image. Typically, each image’s histogram is divided into 256 intensity bins
for 8-bit images, and similarity is quantified using metrics such as Chi-Square or Bhat-
tacharyya distance. This method emphasizes global color and brightness distributions but
neglects spatial information, making it less effective for nuanced structural differences [25].

Structural Similarity Index (SSIM)
SSIM evaluates similarity by decomposing images into luminance, contrast, and struc-

ture components. It computes local statistics within small windows and integrates them
into a single similarity score that mirrors perceived image quality. SSIM effectively cap-
tures structural information like edges and textures, aligning closely with human visual
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perception. Although slightly more computationally expensive than the former methods,
it is robust to varied conditions [26].

Local Detectors Conversion Although not inherently a global matching technique,
local feature matching can be adapted to achieve a global understanding of image similarity.
This involves identifying and matching keypoints in both images and assessing the overall
number of good matches. However, this approach alone does not ensure an even distribution
of matches across the entire image, potentially leading to biased, localized similarity
assessments. To mitigate this, a grid matching technique is employed, dividing the image
into grids and limiting the number of matches per grid. Although the most computationally
intensive, this method enhances robustness against distortions and rotations by ensuring a
uniform distribution of matches across the image. To maintain reasonable runtime, this
method has to employ a very crude detection and matching layer.

2.2.4. Planar Transformation Estimators

Feature-based methods extract and match keypoints from both reference and real-time
images, often incorporating outlier removal stages [23]. By focusing on distinctive features
rather than every pixel, these methods excel in handling large viewpoint changes and
rotations, enabling more precise transformation inference. This targeted approach enhances
computational efficiency and robustness to environmental distortions, though it requires
careful management to avoid performance degradation from variation in the number of
extracted feature points.

In typical UAV flight scenarios, the primary transformations of interest are rotation
and translation. Perspective distortion, caused by three-dimensional structures, is minimal
at high altitudes. Similarly, shear distortion, which occurs when the UAV turns or is not
parallel to the ground, is negligible when the UAV maintains level flight. Furthermore,
scaling is not present as per the scope of this study. The following subsections detail the
primary planar transformations employed in the system.

Affine Transformation

Affine transformation captures translation, rotation, scaling, and shear, providing six
degrees of freedom. It is represented by a 2 × 3 matrix that maps points from one plane
to another while preserving lines and parallelism. Affine transformations are computed
by estimating the affine transformation matrix between two sets of corresponding points
using OpenCV’s estimateAffine2D function [27]. While versatile, the inclusion of scaling
and shear introduces unnecessary error points in the UAV case.



2.2. Fundamental Concepts and Techniques 11

Rigid Transformation Estimation (SVD)

The rigid transformation via SVD preserves the shape and size of objects by estimating
only rotation and translation, excluding scaling and shear. Represented by a 2 × 3 matrix,
rigid transformation ensures orthogonality in the rotation component. Utilizing Singular
Value Decomposition (SVD), this method minimizes the least-squares error between two
point sets. The process involves: computing the weighted centroids of both point sets,
centering the points by subtracting their respective centroids, calculating the covariance
matrix of the centered points, performing SVD on the covariance matrix to derive the
rotation matrix, and determining the translation vector based on the centroids. The
resulting 2 × 2 rotation matrix and 2 × 1 translation vector are combined to form the rigid
transformation matrix. Rigid transformation is computationally efficient and well-suited
for UAV applications [28].

Partial Affine Transformation

Partial affine transformation simplifies the full affine model by focusing solely on translation,
rotation, and limited uniform scaling, offering four degrees of freedom. This transformation
is also represented by a 2 × 3 matrix, similar to the affine transformation but without
shearing and with reduced, uniform scaling. This offers similar performance to the prior
rigid method, but with minor additional error points due to scaling [27].

Homography Transformation

Homography transformation accounts for translation, rotation, scaling, shear, and per-
spective distortion, providing eight degrees of freedom. It is represented by a 3 × 3 matrix
and is estimated using OpenCV’s findHomography function, typically with RANSAC for
outlier rejection [29]. While homography offers greater flexibility in modeling complex,
typically three-dimensional transformations, its additional degrees of freedom introduce
unnecessary errors and computational overhead for UAV-based applications.

2.2.5. Optimization Techniques

Optimization techniques aim to refine the accuracy and reliability of the matched points
used for transformation estimation by effectively filtering out erroneous matches and im-
proving transformation accuracy. The following subsections detail the primary optimization
methods employed in this system.

Random Sample Consensus (RANSAC) for Planar Transformation

RANSAC is a robust estimation technique used to estimate planar transformations by
iteratively selecting random subsets of point correspondences to fit a model and identify
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inliers [30]. The process involves randomly selecting a minimal subset of point pairs,
estimating the transformation model (e.g., affine or homography) based on the selected
subset, determining the number of inliers that fit the estimated model within a predefined
threshold, and repeating the process for a set number of iterations or until a sufficient inlier
ratio is achieved. This approach is highly effective in datasets with significant outliers,
focusing on finding a model that best fits the largest subset of inliers. However, due to
its iterative nature and the need to sample repeatedly, RANSAC can result in increased
runtime, particularly in larger datasets or when dealing with numerous outliers [30].

Least Median of Squares (LMeds) for Planar Transformation

Least Median of Squares (LMeds) is a robust estimation technique used for estimating
planar transformations by minimizing the median of the squared residuals between matched
points [31]. Unlike RANSAC, which focuses on maximizing the number of inliers, LMedS
aims to find a model that minimizes the median error, making it less sensitive to outliers.
The process involves calculating the transformation parameters that result in the lowest
median of squared residuals across all data points. While LMedS can be more robust in
the presence of outliers compared to RANSAC, it can be computationally more intensive
and may not perform as well when the percentage of outliers is high.

Lowe’s Ratio Test

Lowe’s ratio test is a widely used filtering technique used to eliminate ambiguous or
false keypoint matches by comparing the distance of the best match to the second-best
match [32]. For each keypoint match, the ratio of the distance of the best match to that
of the second-best match is calculated, and the match is retained if this ratio is below a
predefined threshold. A lower ratio indicates that the best match is significantly better
than the alternatives, thereby increasing the likelihood of the match being correct. An
example of Lowe’s ratio test filtration is shown in Figure 2.1a and Figure 2.1b.

(a) Matched Features Prior to Lowe’s
Ratio Test. Reproduced from [32]

(b) Matched Features Following Lowes
Ratio Test. Reproduced from [32]
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N-Match or Absolute Thresholding

N-match thresholding involves setting a threshold that allows only a specific number of
matches with the smallest descriptor distances to be retained. Absolute thresholding filters
matches based on a fixed distance in descriptor space. Only matches that meet or fall
below this predefined distance threshold are retained, ensuring that only sufficiently similar
matches are used in the transformation estimation process. These methods primarily
suffer from difficulty in setting the threshold, which is often extremely sensitive to dataset
variations and method parameters.



Chapter 3

System Design
3.1. High-Level System Design
This chapter outlines the developed methodology for the UAV navigation system, detailing
the pipeline and its various components. The system is designed to accurately estimate the
UAV’s position and heading after GNSS signal is lost. The high-level flow of the system is
illustrated in Figure 3.1.

Figure 3.1: High-Level Flow of the System

3.2. Detailed System Pipeline
The system pipeline consists of multiple stages, each designed to perform a specific
task in the navigation process. The pipeline is designed to be robust, accurate, and
computationally efficient, ensuring reliable navigation in various operational scenarios.
The pipeline stages are detailed below.

1. Image (Input): The process begins with capturing a live image from the UAV’s
downward-facing camera. This real-time visual input provides essential information
about the UAV’s environment, forming the basis for position estimation.

2. Extract and Store Features: Keypoints and descriptors are extracted from the
current image to aid in the matching process. This extraction occurs in two layers:

14
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the coarse layer, used in the second stage of image match search space reduction,
and the dense layer, used during the precise transformation stage. The system also
extracts features when GNSS is available to reduce computational load during critical
phases when GNSS is lost.

3. Store Corresponding Features and Telemetry: Extracted features (keypoints
and descriptors) along with their corresponding telemetry data (GNSS position
and heading) are stored for future reference. Stored features facilitate relative
transformation inference when GNSS is unavailable, while telemetry data assists in
converting relative transformations to real-world coordinates and headings.

4. Infer Parameters (Altitude and Camera): To be able to convert from a pixel
translation to a metre value, a conversion factor is required. This conversion factor
is dependent on the altitude of the UAV and the camera’s focal length. When GNSS
signal is available, this stage uses the complete pipeline to estimate the UAV’s Lat-Lon
coordinates using a placeholder factor value. These estimates are accumulated and
compared, using only the first 5 images to balance overall efficiency and parameter
accuracy, with the ground truth Lat-Lon coordinates via linear regression to infer
the conversion factor. This is necessary in the scope of this study, which assumes
constant and unknown altitude and camera parameters. These parameters are both
represented within a single factor, the pixel to metre ratio.

5. Match Features: Features between the current image and reference images are
matched to ensure that comparisons are based on mutual features. This involves
matching of both the coarse and dense layers of features.

The matching process is optimized to ensure robustness against noise and outliers,
with a focus on computational efficiency. The techniques include usage of match ac-
quisition techniques, search techniques, as well as subsequent optimization techniques
to refine the matches.

6. Find Most Similar Image: The stage involves two layers of potential image
match search space reduction until a single image is chosen for the current image to
accurately infer its relative transformation against.

The first is reduction based on proximity to the last known Lat-lon Coordinates.
This stage outputs 5 matches.

Thereafter, a more precise global matching technique is applied to identify the most
similar match from the reduced image search space. This requires initial rotational
alignment using the coarse layer of matched features and subsequent global matching
techniques to identify the best match based on similarity scores. The crude layer is
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chosen as global matching techniques were proven in the testing phase to be robust
against minor rotational inaccuracies, allowing for efficiency prioritization.

7. Estimate Planar Transformation: After identifying the best match, the system
performs a precise estimation of both rotation and translation between the input
and reference images using the dense match layer.

The first step involves estimating the rotation between the images, followed by
aligning the images based on this rotation.

Thereafter, the system recomputes the dense layer of features and matches on the
aligned images. The reason for the recomputation prior to translation estimation
is due to improved accuracy; aligned point clouds allow for improved translation
estimation by way of less parameters to estimate. The amount of mutual information
also remains constant when applying alignment to an image.

Finally, the system estimates the translation between the images using the refined
dense layer.

This rotation and translation estimation are outputted to the next stages for conver-
sion from relative to absolute conversion of the UAV’s heading and position.

8. Estimate Heading: The internal angle between the current and reference images
is added to the reference image’s heading to determine the UAV’s current heading.

9. Estimate Lat-Lon:

The estimated translation at this stage is a pixel value representing the displacement
between aligned images. To convert this to real-world latitude and longitude coordi-
nates, the vector must be scaled in magnitude and rotated to align with the global
coordinate system. This process consists of the following steps:

The translation vector, initially relative to the internal image coordinate system, is
rotated by the heading of the reference image, aligning it with the global latitude-
longitude system without altering its pixel magnitude.

Next, the estimated pixel displacement is multiplied by the inferred pixel-to-metre
conversion factor, resulting in a translation vector in metres with East and North
components.

Then, this vector is converted to a latitude and longitude displacement. To account
for the Earth’s oblate spheroid shape, the equations below are used, which consider
the latitude-dependent distance per degree of longitude:

∆Lon = ∆Eastm
111320·cos(Latref)

, ∆Lat = ∆Northm
111320

where the East and North components represent the eastward and northward dis-
placement vector components in metres, aligned to the global coordinate system.
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The constant 111320 converts degrees of latitude to metres, with longitude scaled by
cos(Latref) to reflect latitude-dependent longitudinal distance.

Finally, the calculated displacements in latitude and longitude are added to the
reference image’s known coordinates, yielding the UAV’s estimated absolute position.

10. Heading and Lat-Lon Estimate: The systems heading and Lat-Lon estimates are
outputted to the user interface for real-time monitoring and in practice, navigation.

3.3. Dynamic Methods and Techniques
Testing showed that the degree of environmental variation often leads to situations where
a static pipeline will either not find a sufficient number of matches or take too long. To
maintain generalizability across datasets (terrains), adaptive methods were implemented
to adjust the pipeline without prior knowledge of the environment.

The first adaptation was made to AKAZE, which did not have a built-in method to
adjust the number of keypoints detected. This method sampled the first image in the
dataset and altered its threshold iteratively until a set number of keypoints were found.
This was done once per dataset to maintain computational efficiency, but in practice, it
may be done per n images or per time interval.

Secondly, Lowe’s ratio employed an adjusting threshold that increased in leniency until
a set number of matches or a percentage of available keypoints were found. This was done
per image.

3.4. Software
This sections details a snippet from the main loop showing the key software flow.

The full code may be found at https://github.com/Samshabz/Skripsie

# Setup Lines ...

# Phase 1: GNSS is Available and Inference Mode is On
for i in range(1, inference_images + 1):

navigator . add_image (i, directory )
navigator . estim_pos ( inference_images , Inference_Mode_On =True)
navigator . find_pixel_to_metre_factor ()

# Phase 2: GNSS is Available and Inference Mode is Off
for i in range( inference_images +1, total_images + 1):

navigator . add_image (i, directory )

https://github.com/Samshabz/Skripsie
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# Phase 3: GNSS is Unavailable
navigator . estim_pos (total_images , Inference_Mode_On =False)

# Debug Lines ...

3.5. Testing Shortlist
The following methods and techniques were tested, with some exclusions based on empirical
results:

Feature Detectors: AKAZE, SuperPoint (with LightGlue matcher), and ORB. Note,
the SuperPoint detector is used in conjunction with the LightGlue matcher to enhance
performance.

Feature Matchers: FLANN and BruteForce. KNN.
Search Techniques: KNN with K = 2. Empirical tests showed a value of 1 to be

ineffective since it excluded Lowe’s ratio test, while values above 2 introduced excessive
computational overheads. Further, radius search was seen to be unreliable due to the
varying density of keypoints across datasets.

Planar Transformation Estimation: Homography, Affine, Partial Affine (Rigid)
transformations using OpenCV, and SVD-based rigid transformations for rotation and
translation estimations. Rotational and translational estimates were initially tested
separately, due to the possibility of different responses to different prior stages and
methods. However, it was seen that inter-method comparisons subtended equivalent
conclusions; the methods were tested for visual brevity using a combined transform.

Global Image Similarity Measures: SSIM, histogram matching, local retrofit, and
cross-correlation.

Optimization Techniques: Standard Deviation Filtering, LMEDS, RANSAC, Lowe’s
ratio test, n-Match thresholding, and absolute thresholding for match refinement. Empirical
tests indicated that cross-checking was not applicable due to the excessive computational
costs involved. KNN.



Chapter 4

Comparison of Methods
This chapter compares the performance of various methods used in the UAV navigation
system, focusing on accuracy, runtime, and robustness. The evaluation includes feature
detectors, local feature matchers, rotational and translational estimators, and optimization
techniques. Each method is tested across multiple datasets to assess generalization and
suitability for real-world UAV applications.

4.1. Testing Setup
This section outlines the framework used to evaluate the performance of the proposed UAV
navigation methods. The evaluation focuses on three primary metrics: accuracy, runtime,
and robustness. These metrics are critical to ensure that the navigation system can reliably
operate under diverse and challenging conditions, reflecting real-world scenarios where the
UAV may encounter varying environmental factors.

Note that understanding the testing setup is important for interpreting the subsequent
results section.

4.1.1. Aim of Testing

The aim of these tests is to compare different methods, rather than to evaluate the overall
system performance. The tests were conducted under intermediary development pipeline
methods that are not listed, and not under optimized runtime or accuracy settings for
the entire system; however, when testing methods within a particular stage, all other
stages and parameters were held constant to ensure fair comparisons. Additionally, non-
testing parameters and methods were set to optimal or near-optimal values to ensure
that each method was evaluated under favorable conditions. This choice ensures that
comparisons were still fair without having to iteratively retest as improvements were made.
Therefore, the results presented are not indicative of the overall system performance, and
no conclusions about the system’s overall performance should be drawn from this chapter.

4.1.2. Datasets

Five distinct datasets were created to rigorously evaluate the methods’ generalization and
performance across diverse environments. These datasets were captured using Google
Earth and involved both translational and rotational movements, simulating typical UAV

19



4.1. Testing Setup 20

navigation tasks. Although the primary transformations were translation and rotation,
there were subtle perspective and scale distortions introduced by the 3D rendering in
Google Earth. The magnitude of these distortions is implicitly addressed by the degrees
of freedom of the transformation estimation methods used, negating the need to quantify
these distortions explicitly.

To maximize the utility of the datasets, the same images are used for both the GNSS-
available and GNSS-denied stages. During the GNSS-available stage, all 15 images are
streamed and stored along with their features and telemetry data. The first 5 images are
used to infer the fixed pixel-to-meter factor, which is related to the camera focal length
and UAV altitude. Subsequently, during the GNSS-denied stage, the 15 images have
their location and heading estimated without GNSS data. Importantly, each image in
the GNSS-denied stage recomputes its features and does not rely on any ground truth
telemetry or use itself as a reference image, ensuring a fair test. Additionally, the images
are spaced sufficiently to introduce challenges in the datasets.

The datasets have various properties to ensure that the tests are challenging yet feasible,
and to mimic real-world data. The datasets were captured at altitudes corresponding to
ground heights of 5–7 km, using images with a resolution of 1920×972 pixels. The specific
resolution was chosen to eliminate image text that could cause false positive matches. The
radial movement between frames varies between 300 and 700 pixels, depending on the
image and the best match found. This corresponds to around 50% to 80% overlap between
frames. Although the accuracy of the distance in metres is dependent on the translation
size between frames, the method that yields the lowest meter error also produces the
lowest overall error. Therefore, this variability does not impact the comparison of methods
based on meter measurements. Each dataset consists of 15 images, balancing testing time
with sufficient evaluation of the methods’ performance.

The datasets used in this analysis encompass a range of terrains and motion types.
The CITY1 and CITY2 datasets were captured in Cape Town, with CITY1 incorporating
both rotational and translational changes between frames, whereas CITY2 focuses solely
on translational movements and is taken at a significantly lower altitude, as per Table 5.3.
The ROCKY dataset, collected in the semi-arid Karoo region, features rugged terrain
with sparse vegetation and includes both translations and rotations. The DESERT and
AMAZON datasets, captured in the Sahara Desert and Amazon Rainforest respectively,
are marked by sparse, repetitive patterns that pose challenges for feature extraction and
matching. These datasets involve both translations and rotations and are difficult even for
human observers to distinguish frame-to-frame differences.

Examples of the datasets are shown below:
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Figure 4.1: Examples of the
CITY1 and CITY2 Datasets.

Figure 4.2: Example of the
ROCKY Dataset.

Figure 4.3: Example of the
DESERT Dataset.

Figure 4.4: Example of the
AMAZON Dataset.

4.1.3. Testing Structure

Each method is subjected to rigorous testing based on the following criteria:
Accuracy: Evaluated using the radial Root Mean Square Error (RMSE) of Lat-Lon

estimations, in meters. This metric provides a clear indication of the method’s accuracy
in estimating the UAV’s position. The accuracy is tested at the end of the pipeline, as
errors in prior stages propagate to the final Lat-Lon error. The radial error is given as the
mean of the radial errors for all images in the dataset.

Runtime: The runtime of the entire dataset is used for comparison. This includes
the time to compute all 15 images for both the with GNSS signal and without GNSS
signal phases. Intermediary stages propagate increases in time, and the runtime per line
is not necessarily indicative of better performance; hence, the entire runtime is used for
comparison. For instance, a method might filter out less keypoints, thereby running faster,
but the subsequent stage will take longer due to the increased number of keypoints.

Robustness: This criterion evaluates the method’s performance under variation in
its parameters, assessing how difficult the method is to tune and how it performs with
crudely chosen parameters across datasets. A scoring system from 1-5 is used, where
5 indicates a wide range of parameters offer near-perfect performance, and 1 indicates
no static threshold works across datasets. 5 indicates a wide range of parameters offer
near optimal performance across datasets; 4 indicates a large range of parameters offer
good performance; 3 indicates a small range of parameters offer good performance; 2
indicates a small range of parameters offer usable performance; and 1 indicates that no
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static threshold works across datasets.

4.2. Feature Detectors
This section presents the evaluation results of three feature detectors: ORB, AKAZE
(dynamic keypoint targeting implementation), and SuperPoint with LightGlue. Feature
detectors were applied to extracting a crude feature layer for rotational estimation, as well
as a dense layer for rotational and translational estimation. Initially, all 3 transformations
were tested independently for each detector, however, it was seen that the inter-method
comparison conclusions were equivalent for each stage. Therefore, to maintain visual
brevity, the detectors are applied to all stages and compared once, with the understanding
of equivalent comparative independent responses to each stage.

Accuracy and Runtime

Figure 4.5 and Figure 4.6 present the radial error and runtime values for each feature
detector across different datasets. AKAZE, utilizing dynamic keypoint targeting, demon-
strated the highest accuracy across all datasets while maintaining reasonable runtime.
SuperPoint recorded the highest radial errors, particularly in the AMAZON datset, where
its training set did not generalize well to the dense, repetitive jungle environment.

Meanwhile, ORB proved to be the most efficient detector, making it suitable for
applications requiring fast processing. SuperPoint demonstrated the longest runtimes
across all datasets, highlighting its limited applicability for time-sensitive applications
unless optimized with GPU acceleration.

Figure 4.5: Radial Error for Various
Feature Detectors.

Figure 4.6: Runtime for Various
Feature Detectors.

Robustness

All three methods were able to maintain their keypoint targets across environments;
however, the quality of those keypoints. SuperPoint consistently achieved equivalent
performance across multiple keypoint targets, earning it a robustness score of 5. AKAZE,
with its dynamic targeting, was able to generalize well across datasets and only significantly
dropped in performance when using below 1000 keypoints, earning a robustness score of 4.
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ORB, while efficient, required precise tuning to achieve consistently good performance
across datasets and was highly sensitive to the target parameter, earning a robustness
score of 3.

Final Selection of Feature Detectors

Coarse Layer (Initial Detection): ORB was chosen for the crude, rotational estimation
layer due to its balance of accuracy and efficiency. A range of 3000 - 8000 keypoints
maintained reasonable accuracy and runtime, largely due to the invariance of the image
similarity estimators to rotational inaccuracies. 3000 keypoints was chosen to prioritize
speed and maintain FLANN runtime as per Figure 4.9.

Dense Layer (Refined Detection): Dynamic AKAZE was selected for the dense
layer due to its consistent performance and robustness and applied to both rotational and
translational estimation stages. A range of 3000-5000 keypoints maintained consistent
runtime and accuracy. 3000 keypoints was chosen to balance runtime, accuracy, and
maintain FLANN performance as per 4.9.

4.3. Local Feature Matchers
This section evaluates two prominent local matchers, BFMatcher and FLANN; LightGLue
was implicitly tested in the feature detectors section with SuperPoint.

Accuracy and Runtime Evaluation

Figure 4.7 presents the radial error in Lat-Lon values for BFMatcher and FLANN across
different datasets. The results indicate that while BFMatcher achieves slightly better
accuracy in certain cases, FLANN remains highly competitive with only marginally higher
RMSE values.

Due to their similar performance, the accuracy was evaluated at varying keypoint
targets across datasets to see if their is a specific point of accuracy convergence in the
two methods. The difference between accuracy in BFMatcher and FLANN, shown in 4.9,
indicates that as the number of keypoints increase, the accuracy of both methods converges.
Divergence occurs at values below 3000 keypoints, and this should be considered if using
FLANN. Notably, FLANN sometimes outperforms BFMatcher (indicated by negative
values) due to its approximate matching. For instance, FLANN may find a less similar
secondary match for a valid primary match, allowing it to be retained through Lowe’s
ratio test, where BFMatcher would find a more similar secondary match and discard the
valid primary match.

Figure 4.8 shows the runtime comparison for BFMatcher and FLANN across different
datasets. FLANN consistently outperforms BFMatcher in terms of speed, with significantly
lower execution times across all datasets. Specifically, in the CITY datasets, where the
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number of keypoints found were significantly higher (no keypoint maximum at this stage),
BFMatcher’s runtime was significantly higher than FLANN’s. This is attributed to
FLANN’s approximate matching, which scales better with the number of keypoints.

Figure 4.7: Radial Error for BF-
Matcher and FLANN.

Figure 4.8: Runtime Comparison
for BFMatcher and FLANN.

Figure 4.9: Convergence in RMSE Lat-Lon Error Between FLANN and BFMatcher
Across Keypoint Targets.

Robustness Testing

BFMatcher did not have any tunable parameters, thereby scoring it a 5 for parameter
robustness. FLANN had a few parameters that could be tuned, including the number
of trees, the number of checks, and the search algorithm. However, FLANN maintained
equivalent performance across these ranges; the default parameters were used.

Final Selection of Local Feature Matcher

Based on the comprehensive evaluation of accuracy, runtime, and robustness, FLANN
emerges as the optimal choice for the UAV navigation system. FLANN offers significantly
faster runtimes and better scalability while maintaining comparable accuracy to BFMatcher.
However, at least 3000 keypoints should be targeted to ensure consistent performance
across datasets.

4.4. Planar Transform Estimators
This section evaluates the performance of four planar transformation estimation methods:
Partial Affine 2D (Rigid Transform plus minor scaling), Affine 2D, Homography, and
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Rigid Transform via Singular Value Decomposition (SVD). As noted in Section 3.5, both
rotational and translational stages are combined into a single transform evaluation since
the conclusions were similar for both stages. For these tests, RANSAC was used on all
methods to filter outliers, except for the Rigid Transform via SVD, which does not have a
built-in outlier rejection mechanism.

Accuracy and Runtime Evaluation

Figures 4.10 and 4.11 summarize the RMSE and runtime values across datasets for each
planar transformation estimation method. The results indicate that while each method
exhibits strengths in different datasets, the Rigid Transform via SVD and Partial Affine
2D consistently emerge as the most accurate methods for rotational and translational
estimations. The Rigid Transform via SVD slightly outperforms Partial Affine 2D in most
datasets. This slight advantage is attributed to its strict modeling of rigid transformations,
which aligns closely with the characteristics of the datasets.

The runtime results, shown in Figure 4.11, are influenced by the degrees of freedom in
each method. Methods with fewer degrees of freedom, such as rigid transforms, demonstrate
better performance across datasets. The Rigid Transform via SVD proves to be the fastest
due to its lack of iterative optimization.

Figure 4.10: RMSE Comparison
Across Datasets for Planar Trans-
form Estimators.

Figure 4.11: Runtime Comparison
Across Datasets for Planar Trans-
form Estimators.

Robustness Testing

The OpenCV methods (Partial Affine 2D, Affine 2D, Homography) utilize RANSAC, or
less commonly LMedS or other outlier rejection methods, for robust outlier rejection. The
thresholds for these methods significantly affect accuracy and require extensive testing to
determine optimal values. For more complex, three-dimensional transformations, adjusting
these thresholds may be more beneficial. However, in this application, none of these
methods outperformed the accuracy of the Rigid Transform via SVD under any threshold.
Thus, the OpenCV methods achieve a robustness score of 3, while the Rigid Transform
via SVD achieves a score of 5 due to its lack of tunable parameters.
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Final Selection of Rotational Estimator

Based on the comprehensive evaluation of accuracy, runtime, and robustness, the Rigid
Transform via SVD emerged as the most suitable estimator for the UAV navigation system.
It demonstrated the lowest combined radial RMSE in latitude and longitude across all
datasets and the fastest runtime, largely due to its alignment with the application-specific
transformations. Furthermore, it required no parameter tuning, making it highly suitable
for real-time UAV applications.

4.5. Image Similarity Estimators
Accurate image similarity estimation, or global matching, is essential for UAV navigation
systems to select appropriate reference images for comparison. Effective similarity estima-
tors should provide accuracy and efficiency while maintaining robustness against small
rotational offsets. The proximity radius for initial search space reduction was crudely set
to include the five closest images, but this parameter is dependent on external factors
such as the UAV’s speed and image capture rate and is not the focus of this evaluation.
This section specifically evaluates the global matching techniques used to estimate the
similarity between images to identify the closest match for subsequent heading and position
estimation.

Accuracy and Runtime Evaluation

The effectiveness of the global matching methods is reflected in the Lat-Lon estimation
error, as more similar matches yield a higher number of good matches and subsequently
lower estimation errors.

Figures 4.12 and 4.13 summarize the RMSE values (in meters) and runtime comparisons
for the Local Retrofit, Cross-Correlation, Histogram, and SSIM methods. The results
indicate that the Histogram and Cross-Correlation techniques perform nearly equivalently
in terms of accuracy, with SSIM slightly behind. The Local Retrofit method recorded
the highest RMSE values, especially in the DESERT dataset. Its crude detection and
matching allowed many false positives, leading to random choices of the best reference
match. Consequently, it was excluded from further analysis.

The Histogram technique demonstrated the most consistent runtimes, followed closely
by Cross-Correlation. SSIM exhibited longer runtimes due to its more complex structural
similarity calculations.
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Figure 4.12: RMSE Comparison
Across Datasets for Global Match-
ing Techniques.

Figure 4.13: Runtime Comparison
Across Datasets for Global Matching
Techniques.

Robustness Testing

The global matching methods did not have tunable parameters, earning them a robustness
score of 5. In contrast, the Local Retrofit model had various parameters that required
precise tuning, such as detector type, detector threshold, grid size, and match threshold.
Balancing runtime and accuracy was challenging with this method, and it required
extremely precise tuning to achieve usable performance. As such, the Local Retrofit model
achieved a robustness score of 2.

Considerations for Alignment Prior to Global Matching

This section details the considerations when selecting the level of precision for the rotational
alignment techniques employed to align image pairs for unbiased similarity comparisons.
To assess the impact of rotational misalignment, the estimated internal alignment angle
was intentionally skewed, and the response from the global matcher was observed in terms
of the resulting Lat-Lon error.

Initially, a 5-degree skew was introduced, and no significant changes in position
estimation were observed. Figure 4.14 shows the percentage change in Lat-Lon error from
the no-skew estimate when a 10-degree skew was applied. Cross-Correlation maintained
the most consistent accuracy, closely followed by Histogram and then SSIM. All methods
demonstrated high robustness to rotational misalignments up to 5 degrees but showed
degradation beyond this threshold. Therefore, when employing a rotational alignment
technique prior to global matching, a 5-degree misalignment is tolerable, allowing the
choice of detector and matcher to be guided by efficiency rather than precision.
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Figure 4.14: Percentage Change in Lat-Lon Error with 10-degree Rotational Offset

Final Selection of Global Matching Technique

Based on the comprehensive evaluation of accuracy, runtime, and robustness, the Histogram
technique was identified as the most suitable global matching method for the system.
Histogram consistently provided superior performance in terms of both RMSE and runtime
while maintaining sufficient robustness to rotational error.

4.6. Optimization Techniques
Several methods were employed to enhance the performance of the UAV navigation system,
focusing on filtering image matches to balance noise and maintain stability within the point
sets. These optimization techniques are simpler to implement and were not assessed with
the same depth as the methods in previous sections. Since precise parameter optimization
was not the primary goal of this pipeline, parameters were tuned approximately, with
functional ranges documented.

Planar Transform Outlier Rejection Methods

Two outlier rejection methods, LMedS (Least Median of Squares) and RANSAC (Random
Sample Consensus), were evaluated for match filtration. Both methods performed nearly
equivalently, with LMedS displaying a slightly lower radial error. LMedS was also signifi-
cantly faster than RANSAC, making it the preferred choice for planar transform outlier
rejection. The results are summarized in Figures 4.15 and 4.16. Both methods require
precise tuning of thresholds to achieve optimal performance across datasets, earning them
a robustness score of 3. However, these techniques were not included in the final optimal
pipeline due to the superior performance of the Rigid Transform via SVD without outlier
rejection.



4.6. Optimization Techniques 29

Figure 4.15: Radial Lat-Lon RMSE
Comparison Across Datasets for
LMEDS and RANSAC.

Figure 4.16: Runtime Comparison
Across Datasets for LMEDS and
RANSAC.

Lowe’s Ratio Test

Lowe’s Ratio Test was utilized to filter keypoint matches by comparing the distance
of the best match to that of the second-best match. Initially, a static threshold was
applied to determine match quality. However, this static approach was insufficient for
handling variability across diverse datasets, resulting in inconsistent accuracy. To improve
robustness, a dynamic thresholding strategy was adopted. This approach involves setting
an initial threshold and incrementally increasing it, thereby allowing greater leniency until
a predefined number of matches or a percentage of the keypoints is found.

A lower initial threshold and smaller increment value increase the likelihood of ap-
proaching the desired match count but impact runtime. An initial threshold of 0.7 and
an increment of 0.05 were selected to balance efficiency and accuracy. Working ranges
for reliable performance were found to be between 0.5–0.75 for the initial threshold and
0.025–0.1 for the increment.

Through testing, a target of 500 matches was selected for its ability to consistently
maintain stability across diverse datasets. The working range for reliable performance
was found to be 300 to 700 matches. Additionally, to prevent low-quality matches from
entering the system when fewer keypoints were detected, a maximum match-to-keypoint
ratio of 75% was implemented to ensure sufficient keypoints were found.

N-Match or Absolute Thresholding

Absolute Thresholding, or N-Match Thresholding, involves filtering keypoint matches
based on a fixed number of matches or a specific descriptor distance threshold. Filtering
based on a specific descriptor distance threshold proved to be more effective in generalizing
across datasets and was subsequently chosen.

The method was applied prior to Lowe’s Ratio Test filtering, with a lenient threshold,
to aid in computation for subsequent stages without removing potential matches. This
step was especially beneficial in reducing the number of matches in instances when the
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detector found an abnormally high number of keypoints in specific images.
During the testing phase, various match threshold values between 700 and 2500

keypoints were found to perform relatively equivalently. Thresholds below this range
were too restrictive, while those above had negligible effect. A threshold of 1000 matches
was chosen due to significant gains in runtime relative to the upper limit, with negligible
impact on accuracy.

4.7. Summary
The following methods were selected for the optimal pipeline, used in the results section,
based on the comprehensive evaluation of accuracy, runtime, and robustness across diverse
datasets:

The chosen feature detector was ORB with 3000 keypoints for the coarse detection layer
and AKAZE with 3000 keypoints for the dense detection layer. FLANN was selected as
the local matcher, and the Rigid Transform via SVD was chosen for planar transformation
estimation. Image similarity was evaluated using histograms. The optimization techniques
applied were initial N-Match Thresholding with 1000 matches followed by Lowe’s Filtering
with 500 matches.



Chapter 5

Results
5.1. Performance Analysis
This section presents the results achieved by the optimal navigation system pipeline across
various challenging datasets. The analysis evaluates the system’s accuracy, efficiency, and
generalizability, providing insights into its applicability in real-world UAV navigation
scenarios. Details about the testing setup are provided in Chapter 4.

5.1.1. Key Metrics

The system’s performance across the five diverse datasets—CITY1, CITY2, ROCKY,
DESERT, and AMAZON—is evaluated based on two primary metrics: Accuracy and
Runtime.

Accuracy is assessed in two primary ways:
1. Absolute Radial Error (RMSE): This metric measures the root mean square error of

the estimated positions compared to the ground truth positions, calculated as the average
radial distance (in meters) between the estimated and true positions over the dataset. It
provides a tangible understanding of the error magnitude. Additionally, errors may be
represented per image, in pixels or in axial components, offering an intuition about the
error size relative to the fixed image resolution of 1920×972 pixels.

2. Relative Radial Error : This metric expresses the per-image absolute radial error as a
percentage of the ground truth radial displacement, averaged over the dataset. The ground
truth radial displacement is the magnitude of the translation vector from the reference
image’s center to the current image’s center, measured in meters. This normalized metric
allows for a clearer understanding of the system’s accuracy relative to the movement size.
Errors may also be represented per image or in axial components.

Runtime is evaluated in three scenarios:
1. Mean Add Time (With GNSS): The average time required to add one image to

the pipeline during GNSS availability. This includes streaming the image and extracting
its features. This time determines the system’s processing rate while GNSS signals are
available after parameter inference has concluded.

2. Mean Parameter Inference Time (With GNSS): The average time needed per
image to infer the pixel-to-meter conversion factor. This includes processing the entire

31
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pipeline—finding the best match, estimating the transformation to estimate the UAV’s
position—and performing linear regression using the ground truth (once at the end of this
mode). Adding this to the Mean Add Time provides the total time to process an image
when GNSS is available and parameter inference is active. The inference mode is active
for the first five images; further processing provided negligible improvements in accuracy.

3. Mean Location Inference Time (Without GNSS): The average time taken per image
to infer the UAV’s location when GNSS signals are lost. This time encompasses processing
the entire pipeline to estimate the UAV’s position. This metric is critical as it determines
how quickly a pilot can correct any path deviations to prevent further drift.

5.1.2. Requirements Compliance

This section provides a concise summary of the system’s ability to meet the outlined
requirements, as detailed in Section 1.5. Table 5.1 shows the system’s compliance with
the requirements; detailed performance evaluations are presented in the subsequent sec-
tions. The system meets both the accuracy and runtime requirements across all datasets,
indicating its adaptability

Table 5.1: Compliance with Requirements for Radial Error and Processing Time

Requirement CITY1 CITY2 ROCKY DESERT AMAZON
Max Radial
Error ≤ 10%

0.6356% 0.2715% 6.2123% 0.3516% 0.7447%

Max post-GNSS
Inference Time ≤ 2s

1.3609s 1.6271s 1.4374s 1.8392s 1.7091s

Max with-GNSS
Time ≤ 5s

2.0377s 2.1342s 2.2412s 2.2418s 2.3975s

5.1.3. Detailed Results

This section presents the results, while Section 5.1.4 discusses the sources of error in the
system.

In terms of accuracy, as shown in Figures 5.1 and 5.2, all datasets achieved a mean
radial error below 2% of the ground truth displacement, a mean pixel error below 1.05
pixels, and a mean positional error below 3.2 meters. Evaluating the percentage error,
the datasets’ performance from best to worst is as follows: CITY2, DESERT, AMAZON,
CITY1, and finally, with a significant difference in performance, ROCKY.

Regarding maximum single-image errors, the highest error occurred in the ROCKY
dataset, with a maximum radial error of 6.21% of the ground truth displacement, corre-
sponding to 27.54 meters or 4.93 pixels.
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For runtime performance, as shown in Figure 5.3, the mean add (feature extraction)
time across datasets was below 0.6 seconds, the mean parameter inference time was below
1.4 seconds, and the mean location inference time was below 1.3 seconds. This indicates
that the system maintains real-time performance even during parameter inference, with
the sum of the mean parameter inference and add times being below 2 seconds (within the
5-second requirement), and the location inference time below its requirement of 2 seconds.

Regarding maximum single-image runtimes, the system remained under the crucial
2-second threshold following GNSS signal loss. During the with-GNSS phase, the system
produced runtimes slightly above 2 seconds while inference mode was active (combining
the add time and parameter inference time). Once inference mode was off, this runtime
stayed below 2 seconds. Over the entire flight, these occasional longer runtimes would be
offset by shorter processing times when inference mode was off, resulting in an overall
mean runtime below 2 seconds, well within the 5-second requirement.

Finally, these results are met across all datasets. The system’s performance is con-
sistent across diverse terrains, demonstrating its robustness and adaptability to varying
environmental conditions without any dataset-specific tuning.

Figure 5.1: Mean Percentage Error
Across Datasets (Movement Size Nor-
malized).

Figure 5.2: Mean Pixel and Metre Error
Across Datasets.

Figure 5.3: Mean and Max Runtime Performance Across Datasets.

5.1.4. Visual Results

Figures 5.4 and 5.5 illustrate the actual versus estimated flight paths of the UAV in
the ROCKY and DESERT datasets, respectively. Even in the worst-performing dataset,
ROCKY, the system maintains a highly accurate flight path on a broader scale, demon-
strating that the errors are negligible for practical purposes.
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Figure 5.4: Flight Path of UAV in
Rocky Dataset (Worst)

Figure 5.5: Flight Path of UAV in
Desert Dataset (Best).

Figure 5.6 presents examples of the bottom 50 matches, after filtering, in the CITY2
dataset. This illustrates the reliability of the feature matching on a broader scale.

Figure 5.6: Matches Between Two Images in CITY2 Dataset.

Figure 5.7 shows the overlay of two images from the CITY2 dataset after applying the
estimated rotation and translation. This visual representation demonstrates the system’s
ability to accurately compute the transformation between images. The visible borders
result from the rotation and translation causing parts of the images to extend beyond the
canvas boundaries. The near-perfect alignment of the images indicates the effectiveness of
the transformation estimation. Notably, slight blurring near the outer edges of the overlaid
section suggests minor discrepancies. Specifically, the outer pixels move at different rates
compared to those at the center because of the varying angles at which light enters the
camera lens. While these are minor sources of error in this study, cameras with significant
fisheye distortion might experience more pronounced errors in these regions.

Figure 5.7: Overlay of Two Images in CITY2 Dataset.

Figure 5.8 illustrates the distribution of pixel deviations in the X and Y directions
across the datasets. To improve clarity, some axial values are grouped, and the deviations
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are quantized into bins; thus, the values represent ranges rather than exact pixel offsets.
This visualization provides an intuitive understanding of the pixel error distribution and
any potential axial bias. As shown, the errors are distributed relatively evenly across both
axes, indicating no significant axial bias in the system. Moreover, the majority of errors
are within 2 pixels, demonstrating the system’s robustness and accuracy in localization
estimates. The largest radial error, as noted in Figure 5.8, is 4.92 pixels. While this error
is relatively small, the sources of these errors are discussed in the following section.

Figure 5.8: Heatmap of Pixel Deviations in X and Y Directions

Analysis of Identified Sources of Error

The system’s maximum error was observed to be 6.2% of the UAV displacement on the
ROCKY dataset. Additionally, notable outliers were detected in the CITY1 and AMAZON
datasets, with maximum errors of 0.64% and 0.74%, respectively. Below, the sources
of these errors are analyzed, highlighting their prevalence across all datasets and their
amplified effects in specific cases.

Differences in Overlap: Although the mean performance across all datasets is
relatively good, a significant outlier was observed in one image in the ROCKY dataset.
This is attributed to the step size, or displacement, between that image and its best
reference match. The radial translation between these images is approximately 873
pixels—the largest step size by a considerable margin across all datasets. This large
displacement reduced the mutual overlap to 59.4%, the lowest among all datasets, leading
to a higher error of 6.2% of the UAV displacement. Therefore, maximizing the path overlap
is crucial for maintaining a high level of accuracy, as insufficient overlap was the primary
reason for the poorer performance in the ROCKY dataset.

Quantization Effects: When images are captured from slightly different positions,
sub-pixel shifts can cause feature edges to distort. At a fixed resolution, details smaller than
a pixel cannot be accurately represented, leading to potential inaccuracies due to averaging.
For large features, the impact of this distortion is minimal relative to the feature size.
However, smaller features experience significant boundary distortions, causing high levels
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of descriptor and keypoint inaccuracies. This effect is exacerbated at higher altitudes where
features are predominantly small, impacting descriptor fidelity and keypoint precision.
The CITY datasets, with their dense, small-scale features, are especially affected, resulting
in increased sub-pixel errors. While CITY2 experiences sub-pixel shifts as well, its simpler
frame-to-frame translations (without significant rotation) help reduce the overall error,
making the effect less pronounced.

Depth and Perspective Variations: Google Earth’s 3D terrain model introduces
changes in perspective and ground height as images are captured from different positions.
These variations are intensified by significant altitude changes in the landscape. The
ROCKY dataset, characterized by pronounced elevation differences in mountainous areas,
demonstrates the effects of these perspective distortions and scale discrepancies.

Homogeneous and Repetitive Terrain: The effectiveness of keypoint detection
relies on the presence of unique, high-contrast features. Similarly, the accuracy of matching
depends on whether the local environment surrounding a feature is sufficiently distinct.
In homogeneous and repetitive environments, such as the AMAZON dataset, feature
detectors struggle to identify a diverse set of keypoints, and matchers face challenges in
selecting correct correspondences. Although modern computer vision techniques mitigate
this issue to a large extent, in highly repetitive terrains, even these advanced methods
encounter difficulties.

Variability in Terrain and Environmental Conditions: Each dataset’s terrain
has unique attributes, such as the density of good features and the uniqueness of keypoints.
Optimal feature counts vary with terrain type; however, this study applied a uniform
target number of keypoints and matches across all datasets. This static approach does
not fully account for the variability in feature distribution and environmental conditions,
leading to generalized performance rather than terrain-specific optimization.

Optical Distortion Effects: Camera lenses cause distortion, particularly at the
edges of the frame. This occurs because light from the edges enters the lens at steeper
angles compared to the center, resulting in different perceived motion. This change in
angle affects how features move across frames, making the outer pixels appear to move
differently than those at the center. This non-uniform movement can lead to discrepancies
in pixel displacement, impacting keypoint detection and matching accuracy.

Algorithmic Limitations: The image processing and matching algorithms employed
have intrinsic constraints, particularly under challenging conditions or when handling
repetitive features. Optimized for computational efficiency, these algorithms may not
capture every image feature perfectly, contributing to potential errors in feature detection
and matching.
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5.2. Adverse Conditions Evaluation
To ensure the system’s robustness and practical viability, it is essential to evaluate its
performance under various challenging conditions. This section presents tests conducted
under reduced resolution, which is particularly relevant for UAVs with limited compu-
tational resources. Although dynamically varying lighting conditions and low reference
image overlap are also important, they are not included in this evaluation due to current
limitations in test data and scope.

5.2.1. Low Resolution Testing

This section evaluates the system’s performance under varying resolution factors, relative to
the original 1920×972 resolution. The analysis focuses on the trade-off between navigational
accuracy and computational efficiency as the resolution decreases. The goal is to determine
whether the system can maintain performance in scenarios where the UAV has limited
power and computational resources and can only operate at lower resolutions.

Results

The results, as shown in Figures 5.9 and 5.10, indicate that the system maintains stable
performance with minimal changes in accuracy until the resolution is reduced to an
absolute resolution of 336×221 pixels. At this point, there is a sharp increase in error
in the AMAZON dataset, indicating that the system’s accuracy becomes significantly
compromised. Interestingly, the accuracy remains relatively constant down to this critical
resolution, suggesting algorithmic robustness to lower levels of detail.

In terms of runtime, the location inference time decreases as the resolution decreases.
A reduction of the resolution by half, to 960×486 pixels, results in slightly less than a
50% decrease in runtime compared to the original resolution. This decrease is due to the
reduced number of features and matches possible, leading to a lower computational load.
Importantly, the system’s accuracy is not compromised at this resolution.

Figure 5.9: Radial (%) Error vs Reso-
lution Factor

Figure 5.10: Location Inference Time
(s) vs Resolution Factor
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Conclusion

The evaluation shows that the system can maintain stable performance with minimal
changes in accuracy at resolutions slightly above 336×221 pixels. However, below this
resolution, the system’s accuracy becomes significantly compromised, leading to a sharp
increase in error. The system’s runtime decreases linearly as the resolution decreases, with
an almost 50% reduction in runtime observed at a resolution of 960×486 pixels while
maintaining accuracy. This indicates that the system can operate effectively at lower
resolutions, providing a viable solution for UAVs with limited computational resources.

5.2.2. Overlap Testing

This section evaluates the system’s performance as the overlap between images decreases.
Overlap is defined as the percentage of pixels shared between images relative to the image
size. By analyzing the system’s accuracy and runtime as overlap decreases, the minimum
overlap required for reliable navigation and real-time performance my be identified.

Methodology

To simulate a decrease in overlap, images from the CITY2 dataset are progressively
cropped. Since the CITY2 dataset involves only translational changes, calculating the
overlapping pixels simplifies to considering the difference between the image size and
the translation vector. Cropping is performed incrementally by 50 pixels per iteration,
scaled in the x-direction according to the aspect ratio, alternating between x and y crops.
Because translation vectors vary between images, the overlap is presented as that of the
bottleneck image (the one with the lowest overlap) for each dataset to maintain clarity.

Results

The accuracy plot in Figure 5.11 shows that the error remains nearly constant until
the overlap drops below approximately 30%, after which the error starts to increase
significantly. It is important to note that below the lowest tested value, the overlap of
the bottleneck image was below 0%, so further error measurements are not shown. An
interesting observation is that the error decreases again after initially increasing at very
low overlap values. However, this reduction is unreliable and results from coincidental
high densities of good matches despite the low number of overlapping pixels. Therefore,
extremely low levels of overlap cannot be relied upon for consistent accuracy. Maintaining
an overlap above 30% ensures stable and accurate navigation.

The runtime plot in Figure 5.12 indicates a linear relationship between runtime and
overlap. As expected, runtime decreases as overlap decreases because fewer features and
matches are processed, reducing computational load. The rate of decrease is slightly
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above 0.1 seconds per 10% reduction in overlap. While runtime decreases moderately
with reduced overlap, the potential for decreased accuracy and instability may outweigh
the benefits. Minor crops can be used once the path is established to slightly reduce
computational load, but periodically referencing the full image is essential to maintain
accurate positioning.

Figure 5.11: Overlap Percentage vs.
Mean Error Percentage.

Figure 5.12: Overlap Percentage vs.
Mean Localization Time.

Conclusion

The results demonstrate that the UAV can maintain reasonable accuracy until the overlap
drops below 30%. While runtime decreases with reduced overlap, the marginal runtime
benefits may not justify the increased risk of navigation errors. Therefore, maintaining an
overlap a margin above 30% is recommended for reliable navigation, with above 60% being
optimal as per 5.1.4, with occasional full-image references used to verify the integrity of
the estimates.

5.2.3. Low-Light Testing

In UAV navigation, long missions may require the UAV to return along the outbound path
at a significantly different time from the outbound journey, potentially under different
lighting conditions. In this test, the lighting conditions of the reference images are altered
relative to those of the current images, simulating evening and nighttime conditions. This
adds an extra layer of difficulty beyond simply changing all images to low-light conditions;
however, the ability to operate under low-light conditions is also implicitly tested here.

Since darker images have less uniqueness and contrast, the number of features found
may become too low if the dynamic detector threshold is not adjusted. Therefore, the
detector threshold is adjusted for the simulated nighttime conditions, acknowledging that
this more lenient threshold leads to more keypoints and subsequently higher runtime. In
practice, the detector threshold should be recalculated periodically to ensure a consistent
number of keypoints are found across images taken at different times.
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Methodology

This section evaluates the robustness of the navigation method under simulated evening
and nighttime conditions across five datasets: CITY1, CITY2, ROCKY, DESERT, and
AMAZON. The parameters used to simulate the lighting effects are shown in Table 5.2,
with no effects applied for daytime conditions. Nighttime conditions are simulated through
darkening and adding noise, rather than actual nighttime conditions which would include
dynamic lighting changes. The alpha parameter controls contrast, while beta reduces
the brightness of the image. The noise sigma adds Gaussian noise to mimic low-light
imperfections. The weight balances the processed image and Gaussian noise effect for
realism in night simulations, with higher values implying that most of the image remains
unchanged. To ensure that all values are visible on the plot, the percentage increase from
daytime error is used, alongside a logarithmic scale on the y-axis.

Table 5.2: Parameter Settings for Different Lighting Effects

Effect Alpha Beta Sigma Weight (main)
Early Eve 0.7 -15 10 0.97
Late Eve 0.6 -30 15 0.95

Late Night 0.5 -50 20 0.92

Representative examples from the CITY1 dataset illustrate these conditions:

Figure 5.13:
Daytime.

Figure 5.14:
Early Evening.

Figure 5.15:
Late Evening.

Figure 5.16:
Night-Time.

Simulated Low-Light Conditions in Cape Town reproduced from [11].

Results

Figure 5.17 illustrates the percentage increase in error under each lighting condition across
datasets, relative to the daytime performance.

The CITY1 dataset shows the smallest increase in error across all conditions, maintain-
ing an error increase under 10%. CITY2 follows, with slightly higher increases in error as
lighting conditions become more challenging. This could be attributed to CITY2’s minimal
rotations, which do not implicitly reduce non-mutual information and may allow more
false positives under difficult conditions compared to CITY1. Further, the lower altitude
of CITY2 compared to CITY1, as per 5.3 implies a lower number of distinct features
and subsequently lower contrast range in the dataset, leading to poorer identification
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in low-light scenarios. The strong performance of the CITY datasets can be attributed
to their dense feature environments with numerous high-contrast elements. However,
in real-world scenarios, city lights—unaccounted for due to dataset limitations—could
introduce dynamic changes impacting accuracy, especially if they occupy a significant
portion of the view.

The ROCKY dataset ranks third in performance, with the DESERT and AMAZON
datasets experiencing the largest increases in error. The substantial error rise in these
datasets is due to their already sparse environments becoming even more feature-poor
under low-light conditions, significantly increasing navigation error. The late evening
and nighttime settings are particularly challenging, with errors exceeding 100 times the
baseline daytime error in these sparse environments.

Figure 5.17: Mean percentage increase in error under nighttime and evening conditions.

Conclusion

Despite the high relative error percentages, the actual error is only really understood when
considered relative to the ground truth distances rather than to the baseline, daytime
percentage error. In all datasets, during early evening conditions, this error remains below
5% of the mean ground truth distance between compared images. In denser environments
like the CITY datasets, errors remain under 2% across all lighting conditions. For sparser
environments, it is important to mitigate illumination changes during image capture,
although the pipeline demonstrates robustness to moderate changes in illumination.

5.2.4. Static Camera Tilt Testing

In practice, the camera may not be perfectly aligned facing directly downward. This
test evaluates the system’s performance under a static forward tilt (pitch) of 7 degrees,
exceeding the typical offset a camera may experience due to improper mounting. Radial
error is measured in meters to provide a physical understanding of the system’s performance
with and without the tilt.

As shown in Table 5.3, the system maintains a mean error below 26 meters across all
datasets during tilt, with the effect varying depending on the mean ground distance and
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Table 5.3: Accuracy Results of Tilted Camera Test

Metric CITY1 CITY2 ROCKY DESERT AMAZON
With Tilt
Error (m) 11.13 12.04 17.20 25.11 14.53

No Tilt
Error (m) 4.80 2.76 5.88 2.36 2.53

Ground
Height (km) 6.78 5.21 5.14 5.00 5.70

thus the perspective change. The system’s robustness to camera tilts is evident, with the
error comparable to that without the tilt. This indicates that the system can effectively
handle static tilts.

5.3. Conclusion
The results presented in this chapter confirm that the system meets the accuracy and
time requirements established in the objectives. The system demonstrated consistent and
strong accuracy and runtime performance across various datasets, including sparse-feature
environments, showcasing its ability to generalize effectively. Additionally, in practical
scenarios, once the path is established, there will be significantly less translation between
the current and reference images, leading to lower errors ceteris paribus.

Furthermore, the applied stress tests showed the pipeline’s robustness to low resolution,
reduced overlap, static camera tilts, and low-light conditions, with the system maintaining
stable performance under these adverse conditions. These results underscore the system’s
versatility and effectiveness in real-world UAV navigation scenarios, providing a reliable
and efficient solution for autonomous navigation.

However, it is noted that sparse datasets do not perform optimally under large variations
in lighting, and maintaining an overlap above 30% is critical to keeping errors under 5%
of the UAV’s displacement.

Overall, the system has proven to be a versatile and effective solution for UAV
navigation, showing remarkable potential to sustain operation under a wide range of
operational challenges and environmental conditions.
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Conclusion
Global Navigation Satellite System (GNSS) vulnerabilities, such as jamming and spoof-
ing, pose significant risks to Unmanned Aerial Vehicle (UAV) navigation, potentially
leading to loss of control and mission failure. Recognizing the limitations of existing
alternatives—which are often prohibitively costly or unreliable—this project addressed
the urgent need for a robust, GNSS-independent navigation system for UAVs operating in
GNSS-denied environments. The primary objective was to develop an accurate, adaptable,
and generalizable image-based navigation system to serve as a redundancy to GNSS.

To achieve this objective, effective methods for feature extraction, matching, similarity
computation, and planar transformation estimation were carefully selected and integrated
to optimize the overall system pipeline. The implemented system was thoroughly tested
across diverse datasets representing various terrains and environmental conditions.

The results demonstrated that the system successfully met all outlined objectives. The
maximum radial error remained below 10%, with 4 out of 5 datasets exhibiting errors
below 1% of the radial image displacement. The system maintained real-time performance
during both the GNSS-available phase—where it captured features along the outbound
path—with response times below 5 seconds, and during GNSS-denied scenarios—with
response times consistently under 2 seconds across all datasets.

Despite challenges such as terrain variability, quantization errors, depth changes, and
optical distortions from camera lenses, the system maintained robust accuracy across
diverse datasets. Its resilience was further evidenced under varying lighting conditions,
static camera tilts, reduced reference image overlap, and changes in resolution, showcasing
its adaptability to real-world operational demands. However, it is important to acknowledge
that the system’s performance was notably impacted under extreme low-light conditions
and image overlaps below 30%, suggesting areas for future improvement.

In conclusion, this project successfully developed a versatile and effective image-based
GNSS-redundant navigation system for UAVs, demonstrating consistent and reliable
performance across a wide range of terrains and operational conditions. The findings
validate the feasibility of image-based navigation systems as a viable redundancy measure
to address the vulnerabilities associated with GNSS dependency, thereby enhancing flight
safety and mission reliability. With future enhancements, this system holds significant
potential for strengthening UAV navigation reliability, supporting critical operations in
national security, disaster response, and beyond.
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6.1. Recommendations for Future Work
This study established a foundational framework for image-based UAV navigation, present-
ing several avenues for future enhancement. Addressing distortions from roll, pitch, and
altitude changes is a pivotal initial step to ensure real-world applicability of the system.
Incorporating a multi-image weighted inference system could improve location accuracy
by leveraging information from multiple reference images, thereby mitigating the impact
of individual image distortions or outliers. Implementing non-planar stereo matching
techniques would enhance depth perception and altitude estimation in complex terrains,
allowing the system to account for three-dimensional variations in the environment. Inte-
grating real-time mapping data with reference images could eliminate the need for prior
image capture and fixed return paths, enabling UAVs to navigate freely within mapped
regions without positional drift. Deploying the system on higher-performance single-board
computers (SBCs) and utilizing higher-resolution imaging sensors could support more
sophisticated computations and detailed feature extraction, improving overall system
performance. By pursuing these enhancements, the navigation system could become more
robust, adaptable, and scalable, making it suitable for a broader range of UAV applications
and operational scenarios.
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Appendix A

Project Planning Schedule

Week Weekly Plan
Week 0 (Before
21/7)

Approached with and accepted the project topic: ”An Image-
Based Navigation System for UAVs.”

Week 1 (21/7-28/7) Review Literature on image-based navigation and GNSS vul-
nerabilities to assess current advancements and research gaps.

Week 2 (28/7-4/8) Refine project scope and requirements based on the literature
review. Define clear objectives and start report writing.

Week 3 (4/8-11/8) Submit the supervisor-student agreement with the expected
outcomes. Begin developing the system-level design aligned
with the requirements.

Week 4 (11/8-18/8) Research and choose suitable algorithms for feature extraction,
matching, and transformation estimation.

Week 5 (18/8-25/8) Develop a detailed software implementation plan, with the
necessary modules, based on the system design.

Week 6 (25/8-1/9) Start coding and get comfortable with the primary sections on
feature detection and matching.

Week 7 (1/9-8/9) Implement different planar transformation estimation tech-
niques for rotation and translation.

Week 8 (8/9-15/9) Optimize transformation estimations and integrate all ap-
proaches into a single main file.

Week 9 (15/9-22/9) Transform relative to absolute location estimations.
Week 10 (22/9-29/9) Develop image similarity estimation techniques, integrate com-

ponents into a unified pipeline, and Start comparative tests.
Week 11 (29/9-6/10) Optimize algorithms for better efficiency and accuracy. Prepare

diverse datasets covering various terrains and conditions for
testing.

Week 12 (6/10-
13/10)

Conduct testing across datasets to evaluate system performance.

Week 13 (13/10-
20/10)

Test the system’s robustness to various operational challenges.

Week 14 (20/10-
27/10)

Finalize all results and perform any additional necessary tests.
Evaluate with regards to the objectives

Week 15 (27/10-
3/11)

Complete the final report. Start preparation for presentations.

Table A.1: Project Timeline and Weekly Plan

48



Appendix B

Outcomes Compliance

Student’s Graduate Attribute (GA) Achievement Plan

GA 1: Problem Solving

I have met this objective by taking a broadly defined problem: developing an image-
based GNSS-independent navigation system for UAVs, and systematically solving this
through research, synthesis of an optimal pipeline, experimentation and analysis. Using
mathematical and statistical methods, I created a system that identifies, matches, and
estimates UAV transformations in real time. Further, this involved investigating the
sources of pipeline errors and solving them via improving understanding of fundamental
global positioning concepts. Finally, this involved the numerous software engineering
challenges that required constant problem-solving to ensure logical soundness, robustness
and accuracy.

GA 2: Application of Scientific and Engineering Knowledge

My project utilized computer vision theories, image processing techniques, and pre-trained
machine learning models. I applied algorithms to detect and analyze landscape changes,
leveraging homographic transformations to account for relative UAV motion without
GNSS signal. Statistical methods improved accuracy by testing different outlier rejection
methods, ensuring reliable operation across multiple terrains.

GA 3: Engineering Design

I developed a high-level flow diagram for the image processing pipeline, integrating multiple
resources and techniques with robust measures to handle inaccuracies without detailed
pipelines available in literature. My engineering principles and design skills ensured
development of a system that was built from the ground up to be adapt to various, dense
and sparse, environments without manual intervention, maintaining stability and precision.
This design also ensures modular design to facilitate scalability and future enhancements.
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GA 4: Investigations, Experiments, and Data Analysis

I collected extensive data across various environments and conditions, systematically
testing the navigation system to identify accuracy and robustness. Statistical analysis
ensured accurate quantification of errors, such as knowing how to best quantify system
performance. For instance, this included looking at maxima of error, quantifying them in
different metrics for different perspectives, and analyzing potential sources of errors based
on nuanced differences such as variance in ground image overlap. Ongoing experimentation
with feature detection and matching algorithms, including neural network-based methods,
fine-tuned the system’s performance.

GA 5: Engineering Methods, Skills, and Tools (including IT)

I employed various Tools, including Python libraries like OpenCV, Matplotlib, Sklearn
for data analysis and advanced frameworks for image processing. Rigorous research into
current solutions and adherence to software engineering practices and engineering methods
ensured systematic solving of parts of the problem, modularity, code optimization, and
error handling. Different computational techniques allowed for precise text and visual
feedback for evaluation and debugging, allowing continuous optimization.

GA 6: Professional and Technical Communication

This project involves both an oral presentation and written report; thereby demonstrating
my ability to communicate effectively, both orally and in writing. Further, this project
involved using diagrams and tables to communicate complex concepts concisely, facilitating
understanding of the project’s technical aspects.

GA 8: Individual Work

I took responsibility for all aspects of the development and implementation process. This
included problem-solving, design, and optimization, as well as the testing and analysis
of results. My role required me to work independently to research, develop, and refine
solutions, utilizing various resources and overcoming challenges with weekly feedback from
my supervisor.

GA 9: Independent Learning Ability

This project demanded independent learning to solve complex navigation challenges in
GNSS-denied environments. This was done through researching different research materials
to gain an understanding and relevant technical studies. I expanded my understanding
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of Computer Vision independently, equipping myself with the skills necessary to achieve
project goals without requiring extensive guidance.
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